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Abstract

In this paper we present the computation of symbolic dynamics of a one dimensional
return map of a piecewise-affine hybrid system. The system arises as a simple electrical
circuit with hysteresis switching, and exhibits chaotic dynamics. Our method allows us to
rigorously obtain a qualitative description of the discrete behaviour of the system. We show
how the discrete dynamics changes as a parameter is varied, and we compute bounds for the
topological entropy to provide a measure of the complexity of the system.
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1 Introduction

Hysteresis systems are a very common class of hybrid system which model many phenomena
and devices in engineering and sciences. Even in two dimensions the behaviour of such systems
can present very complicated dynamics, including chaotic behaviour [3]. One way of obtaining
insight into the system behaviour is to study the pure discrete part of the evolution as given by
the symbolic dynamics.

In previous work [5] we developed and implemented algorithms to approximate the symbolic
dynamics of one dimensional return maps, and applied these algorithms to the study of of
the hysteretic system introduced in [3]. In this work we give a detailed study of the symbolic
dynamics of an electrical circuit with hysteresis switching introduced in [4]. This system is
chaotic, and we find infinitely many distinct discrete behaviours for the return map of the
system.

The extended abstract is organized as follows. In Section 2 we present some basic notions
about symbolic dynamics and we mention the algorithms of approximation of symbolic dynamics
of one dimensional map. In Section 3 we describe the hysteresis system and the related return
map and we present the approximation of the the symbolic dynamics of the map.

2 Symbolic Dynamics

2.1 Shifts Spaces

In this subsection, we introduce some basic notation and terminology regarding symbolic dy-
namics. For more information, see [2] and [1]

Definition 2.1 (Shifts). Let A be a finite alphabet. The shift map σ on sequences Aω is defined
by (σ~s)i = si+1 for i ∈ N. A shift space on A is a compact subset Σ of Aω (in the topology
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induced by the metric d(~s,~t) = 2−min{n∈N|sn 6=tn} ) which is invariant under σ. A shift is the
restriction of the shift map σ to a shift space Σ. A shift σ|Σ is a subshift of σ|bΣ if Σ ⊂ Σ̂.

Definition 2.2 (Sofic and finite type shifts). A shift is called sofic if there exists a graph G(N, E)
and a labelling function L : N −→ A such that S = {s ∈ Aω | ∀n ∈ N : L−1(sn)L−1(sn+1) ⊆ E}.
If L is injective the shift is of finite type.

Definition 2.3 (Topological partition). A topological partition of an interval I ⊂ R is a finite
collection P = {P1, P2, ..., Pn} of mutually disjoint open intervals such that I =

⋃n
i=1 P i. The

boundary points of P are elements of ∂P :=
⋃

P∈P ∂P .
Given topological partitions P and Q, we say that P is a refinement of Q if for all P ∈ P,

there exists Q ∈ Q such that P ⊂ Q. The join of P and Q is defined by P ∨Q = {P ∩Q | P ∈
P, Q ∈ Q and P ∩Q 6= ∅}.
Definition 2.4 (Itinerary). Let P = {Pj | j ∈ J} be a topological partition of I, and ~x = (xi)i∈N
a sequence in I. A sequence ~s is a P-itinerary of ~x if xi ∈ Psi for all i ∈ N.

Given a topological partition, we can define the symbolic dynamics of a piecewise-continuous
function f .

Definition 2.5 (Symbolic dynamics). Let P = {Pj | j ∈ J} be a topological partition of I,
f : I → I a function continuous over Pj : j ∈ J . The symbolic dynamics Σ(f) is the closure of
the set of all P-itineraries of orbits of f .

2.2 Algorithms

The following algorithm can be used to compute the symbolic dynamics of a one-dimensional
piecewise-monotone map. The algorithm can be implemented either with exact arithmetic, or
with interval arithmetic to control numerical errors.

Algorithm 2.6. Let Q be a partition of I and E a topological partition of I, f be a piecewise-
continuous function with nondegenerate critical points.

1. Fix a numerical precision ε and a maximum number of steps n.

2. Compute an approximate topological partition C refining Q and E such that f is continuous
on each piece of C

3. Refine the partition C to obtain an approximate topological partition M such that f is
monotone on each partition element.

4. Refine the partition M by repeating the one of the following partitioning strategies at most
n times to obtain a partition R.

• Forward refinement: Refine a partition P by introducing new partition boundary
points at f(p) for boundary points p ∈ ∂P.

• Backward refinement: Refine a a partition P by introducing new partition boundary
points at f−1(p) for p ∈ ∂P

In either strategy, do not introduce any new points bye which overlap existing boundary
points bpe.

5. Build directed graphs G1 = (V, E1), and G2 = (V, E2) as follows. The common vertex set
V is labelled by {1, . . . , N} where N = |R|. The edge sets E1, E2 ⊂ V × V are defined by
E1 = {(i, j) | f(Ri) ∩Rj 6= ∅} and E2 = {(i, j) | f(Ri) ⊇ Rj}.
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6. Build lower-approximation Λ = Λε,n the finite type shift associated to G1 and over-approximation
Υ = Υε,n the finite type shift associated to G2.

The outputs of the algorithm are shift space Λ and Υ which have the following property:
Λ ⊆ Σ(f) ⊆ Υ. Both Λ and Υ converge to Σ(f) for n tending to infinity and ε tending to
zero. Notice that we can alternatively consider two sofic shift if we choose as labelling function
L̃ : N −→ C :L̃(n) = Ci : L(n) ⊆ Ci and they would express each itinerary in terms of the
partition C computed at the end of the initialization, which is the simplest partition which
generates sofic shifts and the closest to the in ital partition.

3 Analysis of a Circuit with Hysteresis Switching

3.1 System model

In [4] there is analyzed a piecewise affine hysteresis circuit whose dynamics is described by the
following equation:

[
ẋ
ẏ

]
=

[
δ 1
−1 δ

]([
x
y

]
−

[
p
q

]
h(x)

)

h(x) =

{
1 for x ≥ −1,

−1 for x ≤ 1,

The authors compute an analytic expression for the return map f of the system from the
set L = {(x, y) ∈ R2 | x = p, h(x) = 1} to itself, obtaining

f(x) =

{
f1(x), for x ≥ D,

f3 ◦ f2(x), for x < D;

with

f1(x) = −e−δπ(x− q) + q;

f−1
2 (x) = −

√
(x− q)2 + (p + 1)2e−δτ1(x) + q;

f3(x) =





−
√

(x + q)2 + (p− 1)2eδτ2(x) + q for p < 1,

−x for p = 1,

−
√

(x + q)2 + (p− 1)2e−δτ3(x) + q for p > 1;

the functions τi are given by

τ1(x) =
π

2
− arctan

q − x

p + 1
, τ2(x) =

π

2
− arctan

q + x

1− p
, τ3(x) =

π

2
− arctan

q + x

p− 1
;

and
D = f−1

2 (q + δ(p + 1)).

All parameters of the equation can be expressed as functions of a parameter b which characterises
the original electronic circuit.

δ =
5b− 1

2ω
, p =

4b

1− b
, q =

1
2ω

(
8− (5b− 1)4b

1− b

)
, ω =

√
5(1− b)− 1

4
(5b− 1).

In Figure 1 we sketch some trajectories of the systems. The two dashed vertical lines are the
switching thresholds, while the dotted vertical line is the set L.
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Figure 1: Trajectories of the hysteresis system.

3.2 Computation symbolic dynamics and entropy

In this section we present some results on computation of symbolic dynamics and entropy for
b = 0.24 and b = 0.22.

Figure 2 shows the graph of the return map for b = 0.24, together with points si forming
the boundaries of elements of a topological partition. The graph of the return map for b = 0.22
is qualitatively the same.

There is a point of discontinuity at s5a which corresponds to point D in Figure 1, when the
trajectory is tangent to the threshold of the hysteresis. We refer to the system with fix point in
(−p,−q) as left mode and the one with fixed point in (p, q) as right mode. We consider symbolic
dynamics on the intervals I0 = [s0, s5a] and I1 = [s5a, s8]. Points in I0 correspond to orbits
which switch to the right mode without makig any whole turn around (p, q) while points in I1

correspond to orbits which make one or more turns before switching. The initial partition into
monotone pieces consists of intervals, [s0, s1], [s1, s5a] and [s5a, s8]. Since the interval [s1, s7a] is
positively invariant under the return map, we can restrict to considering the dynamics in this
interval, which has monotone pieces [s1, s5a] and [s5a, s7].

In Figure 3 we show the lower and upper approximations of the lower symbolic dynamics
computed by refining the initial partition by forward refinement. The lower approximation
includes only solid edges while the upper includes both solid and dotted edges. Each node is
labelled with a number k which represent the interval [sk, sj ] where j is k + 1 or k labelled
with the next letter of the alphabet. The dark nodes in any graph represent partition elements
subset of I0, while light nodes represent intervals subset of I1. After 2 step of forward refinement
we obtain the end points s3a, s4, s6, s7a. After one more iteration we obtain points s3b, s5b,
s7b

, s7c. We can see that from iteration 2 to iteration 3 of the forward refinement the upper
approximation loses a number of loops, the upper shift shrinks. For instance the loop 5− 7− 6
or the loop 4−3 disappear. The upper entropy for 2 steps of the forward refinement is 0.908740
while for 3 steps is 0.730193, in both cases the lower entropy is zero. With 2 and 3 steps of
forward refinement we can not prove the existence of any periodic cycle including both symbol
1 and 0 of the initial partition.
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Figure 2: The return map for the hysteresis system

Figure 4 (left) shows the maximally connected components of the approximation of the
symbolic dynamics of the return map with b = 0.24 after 6 steps of forward refinement, which
is the minimal number of steps of the forward refinement strategy which produces a partition
whose lower shift approximation has positive entropy. We can deduce the existence of a period-3
orbit through region 3b 5a 7h which has symbols 0, 1, 1 in terms of itinerary of I0 and I1.

For a value of b in the interval [0.22, 0.24] there is a first period doubling bifurcation which
transforms a double screw chaotic attractor to a single screw chaotic attractor [4].

Figure 4 (right) shows the maximally connected components of the approximation of the
symbolic dynamics of the return map in figure with b = 0.22 after 11 steps, which is the minimal
number of steps to have positive lower entropy. The labelling follows the same rules for the
previous shift.

The dynamics described by graph in Figure 4 (left) shows that there is loop of 0 (dark nodes)
in terms of symbol of original partition which means there are trajectories which never make
a whole turn around (p, q). There are not loops of 1 (light nodes) which means there are not
trajectories which never switch. The entropy of the graphs is 0.343990 while the entropy of the
map is in the interval [0.461165 : 0.479751].

Figure 3: Symbolic dynamics for the hysteresis system with parameter b = 0.24 computed using
(left) two steps and (right) three steps of forward refinement. The dark shaded vertices repre-
sent partition elements with symbolic code 0, and the light shaded vertices represent partition
elements with symbolic code 1.

The dynamics described by graph in Figure 4(right) shows that there are not loops of only
0 in terms of symbols of the original partition as instead there are for b = 0.24.

This is a relatively tight approximation to the full dynamics because the entropy of this
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Figure 4: Maximally connected component of the lower symbolic dynamics for (left) b = 0.24
computed using 6 steps of forward refinement, and (right) b = 0.22 computed using 11 steps of
forward refinement.

graph is 0.452698 and the entropy of the map is not higher than 0.476055. We can see that with
a relatively small number of iteration we can already see a qualitatively different behavior of
return maps of the 2 different parameters of b.

4 Conclusions and future work

In this work we have considered the return map of an hysteretic systems, a piecewise affine
flow. We have applied an algorithm for the computation of approximation of symbolic dynamics
of a one dimensional return map. The results of this algorithm detects qualitative different
behaviour of the return map for parameter values on either side of a bifurcation. The algorithm
provides arbitrarily accurate approximation. We are presently developing algorithms for study
return maps of two and more dimensions which require more sophisticated techniques than in
one dimension, such as Conley index theory.
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